

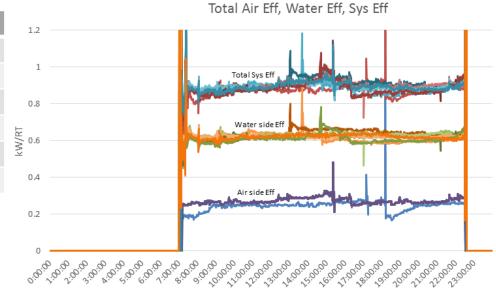
Evolution of BCA Green Mark Standard

BCA Green Mark for Existing Non-Residential Buildings 2017 (GM ENRB: 2017)

Launched for piloting in September 2017

Certifications

GM ENRB: 2017 – Section 2 Building Energy Performance


Air-Conditioning System Efficiency

Encourages measurement of air distribution system efficiency

High potential savings in air distribution system

	Building Cooling Load (RT)					
Green Mark Rating	< 500	≥ 500				
	Minimum Efficiency (kW/RT)					
Certified	0.85	0.75				
Gold	0.80 (v3) → 0.75	0.70				
Gold ^{Plus}	0.75 (v3) → 0.7	0.68				
Platinum	0.70 (v3) → 0.68	0.65				

Baseline for Air Distribution Efficiency (voluntary basis): 0.28 kW/RT

Total air con system score = score water + score air

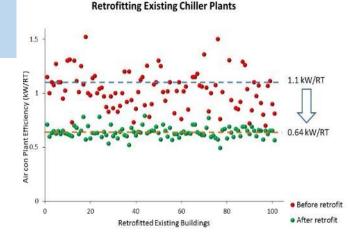
GM ENRB: 2017 – Section 1 Sustainable Management

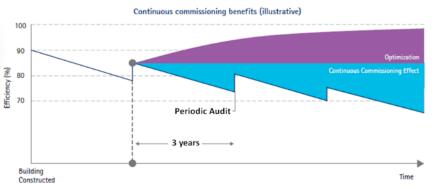
Performance-based Procurement for Retrofits and Maintenance

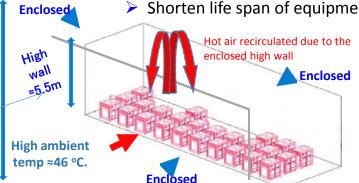
Encourages Energy Performance Contract (EPC) by EPC firms accredited by the Singapore Green Building Council (SGBC)

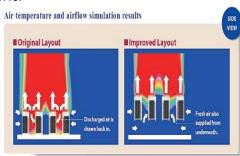
For EE Retrofits

- Centralised chilled water system
- Air distribution system


For Maintenance (min. 3 years)


- Centralised chilled water system
- Air distribution system


GM ENRB: 2017 – Measurement & Verification (M&V) for VRF Systems


Poor Installation Lead to Poor Performance & Breakdown of Aircon

- Poor heat exchange due to recirculating of the hot air discharged
- Increase in high pressure & energy consumption
 - Poor performance & drop in efficiency
 - Shorten life span of equipment.

Install cowl & Raise Units for better Air Circulation

low Temperature

Short-cycling of cold air lead to poor performance

Energy Management - VRV System Efficiency

- An efficiency report based on all the VRV systems in a building can be generated.
- Most of the building system efficiency measured does not have a good result

Bef	ore tuning								
No	Line Name	Average Outdoor Temperature	Average Room Temperature		Cooling F	lverage Power Consumption	Average Loading of CU in %	СОР	Kw/RT
1	CU 2/1F	32.07	23.42	24.07	25.11 6	8.86	46.17	3.66	0.96
2	CU 2/1N	31.85	24.07	24.19	23.80 6	3.62	39.14	3.60	0.98
3	CU 2/2F	32.04	23.16	24.08	23.61 6	3.18	38.83	3.82	0.92
4	CU 2/2N	33.37	24.40	24.59	14.72	3.77	38.33	3.90	0.90
	Average	32.33	23.76	24.23	21.81	i.86			
	Power Input(kw)	Total Required Cooling Capacity (kw)	Total Requ Capacity (F	ired Cooling RT)	Overall operation		or the Overall		g efficiency for the
23.43		87.24	24.81		0.94		AVE COP 3	3 72	
Afte	er tuning					_		_	
No	Line Name	Average Outdo Temperature	oor Average Room Temperature	Average Room Set Temperatu		G Average Power Consumption	of CU in %	ling COP	Kw/RT
1	CU 2/1F	30.11	24.02	22.90	11.61	2.14	21.34	5.43	0.65
2	CU 2/1N	29.47	23.70	23.36	12.33	2.45	21.34 a 20.28 u	5.03	0.70
3	CU 2/2F	29.07	23.30	22.82	12.51	2.56	20.58	4.89	0.72
4	CU 2/2N	29.73	25.43	25.25	10.18	1.96	26.51	5.19	0.68
	Average	29.60	24.11	23.58	11.66	2.28	11		
	Power Input(kw) : Load	Total Required Cooling Capacity (kw)	Total Requ Capacity (uired Cooling RT)	Overall operation (KW/RT)	ng efficiency for	the system Cvo	all operati em (COP)	ng efficiency for the
9.11		46.63	13.26		0.69				

Zero Energy Building – Challenges

<u>Climate</u>: **Hot & Humid**

Land area: Scarce

Singapore's context:

High Rise High Density Urban Tropics

Renewable Energy Options: Limited

Physical: High-rise & Dense

Roof Space: Small

Behaviour: Reliance on air-conditioners

Energy consumption: High

Solar is the ONLY Renewable Energy

PE-ZE-SLEB Definition and Targets

Positive Energy

Zero Energy

Super Low Energy

Key Characteristics

Applicability

Energy Efficiency & Renewable Energy

Highest Energy Efficiency

Consumption Includes Plug Load

On-site and Off-Site Renewable Energy

- Low Rise (1-3 storey)
- School, IHL

- Mid Rise (4-7 storey)
- School, IHL, Office

- High Rise (>=8 storey)
- Office, Retail, Hotel

RE > EC

- **EEI:** < 100 kWh/m².yr
- EC = RE

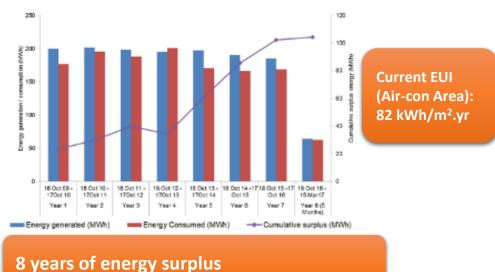
EEI: < 100 kWh/m².yr

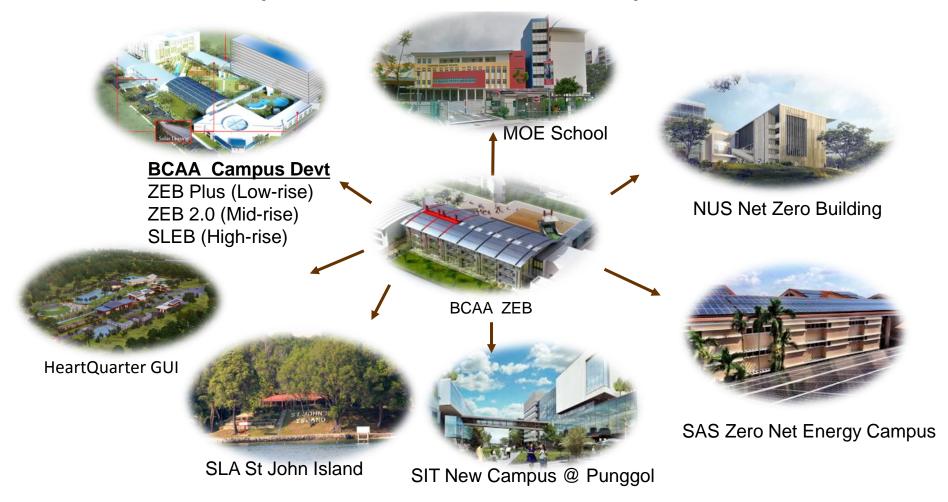
- **RE: Renewable energy**
- **EC**: Energy consumption

EEI is 60% less than 2005 building code level

ZEB @ BCA Academy

More than 30 technologies testbedded





Successful demonstration of solar PV for existing office building

ZEB@BCAA Inspires More ZEB Developments



PE-ZE-SLEB Technology Roadmap

- Defines Singapore's PE-ZE-SLEB
- Comprehensive technology review solar renewable technologies)
- Policy Recommendations & future research & development and demonstration (RD&D) pathway

